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Motivation and Goal 
Many prediction models are based upon a 
mixture of novel covariates and covariates 
that have been evaluated in earlier studies. 
However, the estimation process rarely takes 
that prior knowledge into account when fitting 
the model.  
 
We offer a simple way to incorporate prior 
research about the relationship between 
some of the predictors and the outcome in a 
penalized regression setting. 
 
Method 
Let y be the outcome vector and X be the nxp 
design vector. We adapt the elastic net, 
which minimizes the criterion: 

 
where λ>0 is a tuning parameter for the 
amount of penalization and α in [0,1] tunes 
the mixture of ridge and lasso penalization. 
 
In the multi-step elastic net, we instead 
minimize:

 
where ϕ is a tuning parameter to control the 
amount of penalization on the established 
covariates.  
 
Using cross-validation, we choose between 
four options for ϕ over a fixed grid of α, λ: 

1. ϕ = 0 (no penalty on established) 
2. ϕ = 1/16 (small penalty on 

established) 
3. ϕ = ½ (half penalty on established) 
4. ϕ = 1 (standard elastic net) 
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Application 
We apply the MSN to build a prediction model 
of mortality among pediatric ECMO patients. 
In 2016, Barbaro et al. built an initial 
prediction model using data from 1,611 
patients and selected eleven predictors of 
mortality. In 2019, they sought to update their 
model with eleven novel biometric predictors, 
collected on a non-overlapping cohort of 178 
patients.  
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Simulation Study 
Scen. pest βest punest βunest 

1A 10 All 0.26 30 0 
1B 10 All 0.2 30 1 x 0.6 
1C 10 All 0.25 30 5 x 0.05 
2A 10 All 0.26 90 0 
2B 10 All 0.2 90 1 x 0.6 
2C 10 All 0.25 90 5 x 0.05 
3A 20 Half 0.26 480 0 
3B 20 Half 0.2 480 1 x 0.6 
3C 20 Half 0.25 480 5 x 0.05 
4A 20 All 0.13 480 0 
4B 20 All 0.1 480 1 x 0.6 
4C 20 All 0.13 480 5 x 0.05 

All scenarios were performed at n = 200 or n 
= 1000, with predictors sampled from a 
MVN(0,1) distribution with compound 
symmetric ρ = 0.2 and intercept 
corresponding to 20% prevalence. We 
simulated 500 replicates for each scenario. 
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Discussion 
• The MSN can be used when a subset of 

the predictors has already been 
evaluated in previous models.  

• Including this extra information 
improves upon the elastic net’s 
predictive and estimating performance.  

• The MSN provides a simple way to use 
prior knowledge and improve model 
performance.  
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Figure 1. Simulation results for 500 replicates comparing performance of 
MSN to the Auto-Zero, GLASSO, IPF-Lasso, and SGL. All results are 
given relative to the elastic net’s performance and then log-transformed. 

Figure 2. Established coefficient estimates for n = 178 pediatric ECMO patients, 
estimated using 7 different methods: Auto-Zero, Bayesian historical priors, EN, 
GLASSO, IPF-Lasso, MSN, and SGL.  

Figure 3. Unestablished coefficient estimates for n = 178 pediatric ECMO patients, 
estimated using 7 different methods: Auto-Zero, Bayesian historical priors, EN, 
GLASSO, IPF-Lasso, MSN, and SGL.  


