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Aims and Goals  
To develop a method that helps investigators identify 
clinically relevant predictors of disease.  
Specifically, we want to modify the elastic net in order to 
promote: 

1. Inclusion of well-established, proven covariates 
2. Sensitivity to true, unestablished covariates 
3. Specificity against untrue, unestablished covariates 
4. Model efficiency and accuracy 

 
Int roduct ion 
Since Robert Tibshirani’s development of the lasso in 
1996, research on penalized regression has grown rapidly. 
The lasso is now used across a range of disciplines, and 
dozens of extensions to the lasso have been proposed. 
Rather than minimizing the L2-loss, as is done in ordinary 
least squares, the lasso minimizes the L2-loss plus the 
penalty: 

 
where λ is a tuning parameter that controls the severity of 
the penalty. This additional penalty makes it more difficult 
for variables to enter the model, thus promoting sparsity 
and efficiency. 
 
But what if we already strongly believe that a variable 
should be included in the model? Examples of these 
variables include: 

• Smoking history when estimating lung cancer risk 
• LDL cholesterol for predicting heart disease 
• BRCA1/2 status for breast cancer risk 

It makes little sense to penalize these variables, and doing 
so could result in a distorted model that underestimates 
these known variables’ true effect. Moreover, by using this 
extra information—the knowledge that some variables 
have already met our standard of credibility—we can hope 
to gain some extra efficiency and produce a better model.  
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Method 
Rather than work with the lasso itself, we use the elastic 
net, Zou and Hastie’s 2005 extension to the lasso that 
uses a mixing parameter (α) to blend ridge regression with 
lasso. This results in a more even blend of shrinkage (the 
ridge component) and selection (the lasso component). 
The elastic net minimizes the L2-loss plus: 
 

 
 
In our extension, we instead minimize with the penalty: 
 

 
 
where β1 denotes the established covariates, β2 denotes 
the unestablished covariates, and ϕ1,ϕ2 determine their 
respective degree of penalization. We consider two ways of 
selecting ϕ1,ϕ2: 
 
Two-Step Net (TSN): Use cross-validation to select an 
appropriate λ, α for 3 different penalty factors: ϕ1: {0, 0.5, 
1} while ϕ2 is held at 1 — no penalization on the 
established covariates, half-penalization on the established 
covariates, or full penalization on the established 
covariates (note that this is the normal elastic net). Then 
choose the best of these 3 models. We use deviance as 
the selection criteria here (although other criteria could be 
used).  
 
Multi-Step Net (MSN): Use cross-validation to select an 
appropriate λ, α for 5 combinations of ϕ1,ϕ2 : ϕ1 = {0, 
0.5, 1} while ϕ2 is held at 1 and ϕ2 = {2, ∞} while ϕ1 is 
held at 1—these are the same three options as above, 
plus the options of double penalization on the 
unestablished covariates or infinite penalization on the 
unestablished covariates. Choose the best of the 5 models.  
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Simula t ion S tudy  
We considered three different combinations of established 
vs. unestablished covariates, conducted over a range of 
sample sizes. Here, we present the results from the 
smallest scenario:  

Scenario Pe Pu Magnitude of 
established 

Magnitude of 
unestablished 

1 10 30 All 0.26 All zero 
2 10 30 All 0.2 1 β = 0.6 
3 10 90 All 0.25 5 β = 0.05 

 
All scenarios had n=200 and correlation of 0.2. Cross-
validation was conducted with 5 folds and 25 replicates. 
Each scenario was replicated 500 times. We compared our 
method to the original elastic net (EN), Boulesteix’s IPF-
Lasso (IPF), and Simon’s sparse group lasso (SGL).  
 
Mean AUC (S.E.) 

 Scenario 1 Scenario 2 Scenario 3 
EN 0.765 (0.001) 0.730 (0.001) 0.706 (0.001) 
IPF 0.750 (0.002) 0.726 (0.002) 0.707 (0.002) 
SGL 0.775 (0.001)  0.729 (0.001) 0.730 (0.001)  
TSN 0.770 (0.001) 0.731 (0.001)  0.718 (0.001) 
MSN 0.771 (0.001) 0.728 (0.001) 0.727 (0.001) 
 
In Scenarios 1 and 3, the MSN performs well, with AUC 
almost comparable to the SGL and with a much higher 
sensitivity and TDR. For Scenario 2, IPF performs better.    
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Conclus ions and S ign i f icance  
We present a penalized regression method that 
incorporates prior research support. When the effect of 
unestablished covariates is small, our method performs 
better than other similar methods. However, when 
unestablished predictors have a strong effect, the IPF-
lasso might be a better option. To our knowledge, ours is 
the first attempt at systematically modifying penalty factors 
within in an elastic net type penalty.  
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