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Motivation

Biomedical data sometimes exhibit jumps or sharp changes:

PSA data monitored over prostate cancer course1

Women’s basal body temperature monitored over time2

U.S. prostate cancer incidence over time3

How should we fit these data?

A good statistical method would be able to fit the sharp jump
without introducing excess noise into the smooth portions.
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Horseshoe Prior

Suppose we wish to fit the classic linear regression model:

yi = β0 + β1x1i + β2x2i + ... + βpxpi + ϵi , ϵi
iid∼ N(0, σ2) (1)

for i = 1, ..., n subjects, each of whom have a vector of p
predictors.

If p is large, we might want to impose some shrinkage on the
coefficients β1, ..., βp.
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Horseshoe Prior

Within a Bayesian framework, the horseshoe prior is one popular
way to do so. It takes the form:

βj |τ, λj ∼ N(0, τ 2λ2
j )

τ ∼ C+(0, 1) (2)

λj
iid∼ C+(0, 1)

for j = 1, ..., p.4

For each βj in turn, the horseshoe favors either total shrinkage
(βj = 0) or minimal shrinkage (leaving βj close to its MLE).
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Gaussian Processes

Suppose we have some outcome y observed over time t. In its
simplest form, a Gaussian process can be defined as:

y(t) − y(t − s) ∼ N(0, sτ 2
g ) (3)

A Gaussian process assumes that motion over time is
normally-distributed, and it relies on a single parameter, τ 2

g .

If τ 2
g is large, y(t) will vary a lot; if τ 2

g is small, y(t) will be fairly
constant.

What if motion over time were horseshoe-distributed rather than
normally-distributed?
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A Horseshoe Process

Using a discrete definition, for discretely observed timepoints tk ,
k = 1, ..., m, we can define a horseshoe process:

ytk − ytk−1 |τh, λk ∼ N(0, τ 2
h λ2

k(tk − tk−1)), k = 2, ..., m
yt1 = 0 (4)
τh ∼ C+(0, c)

λk
iid∼ C+(0, 1), k = 2, ..., m

Each increment is horseshoe distributed; each increment has its
own local shrinkage parameter λk . Variance continues to scale with
elapsed time.
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A Horseshoe Process
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Basic Model

Let yi be some outcome observed for subjects i = 1, ..., n at
continuous predictor value xi . Define t as a length m vector
containing the unique, ordered values of x. Suppose that xi = tj .

g(E (yi)) = fj = α +
j∑

k=1
hk (5)

hk |τ, λk ∼ N(0, τ 2
h λ2

k(tk − tk−1)), k = 2, ..., m
h1 = 0
τh ∼ C+(0, c)

λk
iid∼ C+(0, 1), k = 2, ..., m

α ∼ N(a, b2)
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Extension: Monotonicity Constraints

We may want to constrain our horseshoe process to be monotonic
increasing or decreasing. This is easily accommodated in our model
through the use of a transformation m:

g(E (yi)) = fj = α +
j∑

k=1
m(hk) (6)

m could be exponentiation or the absolute value function. We
found that the absolute value function yields better performance.
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Extension: Partial Linear Models

Additional covariates are easy to include. Suppose we have an
additional length p vector of covariates zi for each subject, yielding
an n x p matrix Z of covariates. Then we can model:

g(E (yi)) = fi = α + βzi +
j∑

k=1
hk (7)

β ∼ N(0, d2)

In theory, we could also include multiple horseshoe terms through
an additive framework, although the number of parameters would
grow rapidly.
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Extension: Data Interpolation

There may be values of x at which we wish to obtain predictions,
or to obtain a more finely-spaced grid of increments hk with which
to approximate the horseshoe process.5

We perform Bayesian imputation to obtain estimates of f at these
augmentation points, placing the same prior on faug as is already
on fobs .

Elizabeth Chase Horseshoe processes in partial linear models March 28, 2022 11/23



Motivation
Background
Methods
Results
Application
Application
Discussion

Computation

All models are implemented using Hamiltonian Monte Carlo via
Stan and the cmdstanr package in R.6,7

For sampling, we use 4 chains, each with a warm-up phase of 1000
samples and a sampling phase of 2000 samples, without thinning,
yielding 8000 posterior samples total.

All of the methods described above are implemented in the R
package HPR, available on GitHub.
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Sample Fits
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Performance Overview

We find that HPR performs well for step functions and piecewise
linear functions, and outperforms the comparison methods at
fitting step functions.

Its performance for functions with constant variability is
adequate, but not as good as methods like Gaussian process
regression or penalized splines.

We find that our data interpolation scheme returns sensible
results across varying numbers of augmentation points.

We find that our HPR partial linear model performs well at
estimating the coefficients of the linear predictors in all settings,
and outperforms other methods when fitting step function
nonlinear components.
Full Results
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Motivating Data

We use HPR to model women’s basal body temperature (BBT)
over the course of the menstrual cycle.

In healthy women, BBT usually starts low at the beginning of the
menstrual cycle, jumping sharply immediately after ovulation, and
then returning to pre-ovulation temperatures with the start of the
next period.

Tracking this pattern over several months may give insight into
reproductive health challenges or assist with family planning.

Here, we use example BBT charts abstracted from Weschler
(2015).8
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Motivating Data

We fit a horseshoe process regression (HPR), Gaussian process
regression (GPR),9,10,11 and zero-degree penalized spline model
(Pspline)12 separately for each woman’s chart.
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Results

Figure: Fitted basal body temperature trajectory and 95%
credible/confidence intervals for four women.
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Results

Figure: Fitted basal body temperature trajectory and 95%
credible/confidence intervals from a horseshoe process regression
(HPR) adjusted for the presence of fever for a woman who was ill
during days 8-10 of her menstrual cycle.
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Unanswered Questions

Alternative approaches for computation (variational inference?)

Regularized horseshoe?

Alternative approaches for data interpolation

Other non-Gaussian outcomes (negative binomial, ordinal)
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Thank you! Any questions?
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Poisson Results
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Binomial Results
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Binomial Results
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Gaussian Interpolation
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Poisson Interpolation
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Binomial Interpolation
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Monotonic Results
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Monotonic Results
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Computational Assessment
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Computational Assessment - Interpolation

bigstep bounce

0.00
0.05
0.10
0.15
0.20
0.25

0.0

0.1

0.2

0.3

P
ro

po
rt

io
n 

of
 S

am
pl

es
 

w
ith

 D
iv

er
ge

nc
es

Observed 0.5 0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.00

0.25

0.50

0.75

1.00

P
ro

po
rt

io
n 

of
 S

am
pl

es
 

H
it 

M
ax

. T
re

ed
ep

th

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

P
ro

po
rt

io
n 

of
 P

ar
am

et
er

s 
w

ith
 R

ha
t >

 1
.1

0

1000

2000

3000

4000

0

2000

4000

M
in

. B
ul

k 
E

ff.
 S

am
pl

es

0

2000

4000

6000

0

1000

2000

3000

4000

5000

M
in

. T
ai

l 
E

ff.
 S

am
pl

es

B
in

om
ia

l

G
au

ss
ia

n

P
oi

ss
on

B
in

om
ia

l

G
au

ss
ia

n

P
oi

ss
on

500

1000

500

1000

1500

C
om

pu
tin

g 
T

im
e 

(s
ec

on
ds

)

Elizabeth Chase Horseshoe processes in partial linear models March 28, 2022 13/13


	Motivation
	Background
	Methods
	Results
	Application
	Application
	Discussion
	Appendix

