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Motivation
• Desired end-product: a flexible curve-fitting approach of a (possibly non-

Gaussian) outcome on a continuous predictor that allows for local changes in 
variance  

• Additional desirable features:


• Equipped to work with small and large numbers of observations


• Both equally and unequally spaced grids of the predictor


• Possibly multiple measurements at the same value of the predictor


• Provides uncertainty quantification
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The Horseshoe Prior
• The horseshoe prior was developed as a Bayesian approach for variable 

shrinkage.


• Suppose we are considering the model for subjects i = 1, …, n and predictors 
j = 1, …, p:


               


                                 


• If p is large, we might expect that most of our coefficients are zero, and just a 
couple effects are very large.


        

yi = β1x1i + β2x2i + . . . + βpxpi + ϵi

ϵi ∼ N(0,σ2)
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The Horseshoe Prior
• In 2010, Carvalho et al. proposed a continuous mixture prior, which they called the 

horseshoe:


                            


                    


•  is the global shrinkage parameter, and controls the overall level of shrinkage for 
all the effects.


•  is the local shrinkage parameter, and allows for a mixture of very large signals 
and zero signals.


                          

βj ∼ N(0,τ2ω2
j )

ωj ∼ C+(0,1), τ ∼ C+(0,c)

τ2

ω2
j
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A Horseshoe Process
• We can extend the horseshoe distribution to the stochastic process setting, 

following Polson & Scott (2012).


• We define a horseshoe process  observed at discrete locations 
 as:


         


              


              

H(x)
x0, x1, . . . , xm

H(xj) − H(xj−1) ∼ N(0,τ2ω2
j (xj − xj−1))

ωj ∼ C+(0,1), j = 1,...,m

τ ∼ C+(0, c), H(x0) = 0
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A Horseshoe Process
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Second Derivative Shrinkage
Let  indicate some outcome (i.e. biomarker reading, disease incidence, etc.) at time 

 with . 


                            


• 


• 


• 


• 


    

ytk
tk, k = 0, . . . , m t0 = 0

g(E(yt)) = α + ∫
t

0
H(u)du

α ∼ N(a, b2)

H(u) − H(u − s) ∼ N(0,c2τ2ω(u)2s), H(t0) = 0

ω(u) ∼ C+(0,1), u = t1, . . . , tm, ω(t0) = 0

τ ∼ C+(0,1)
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Computation
• The model is currently implemented using Hamiltonian Monte Carlo in Stan 

(via cmdstanr in R) using decentered parameterizations.


• This yields faster computational performance than other Bayesian methods 
that seek to address this problem.


• However, computation time is still a constraint, and issues with divergences 
still appear occasionally for select datasets.
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Simulation Study
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Simulation Study
• Considered 3 data-generating scenarios, 2 sample sizes (n = 50, n = 100), 

and 3 types of outcome data (Gaussian, Binomial, Poisson)


• Ran 100 replicates of each scenario


• Comparison methods: Gaussian process regression, trend filtering model 
(Tibshirani 2014), shrinkage process Markov random fields (Faulkner & Minin 
2018)

 Elizabeth Chase, University of Michigan Biostatistics

ecchase@umich.edu


16



Simulation Study
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Simulation Study
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Simulation Study
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Simulation Study
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Future Work
• Continue workshopping method—how to set initial values, recommendations 

for setting hyperpriors 


• Perhaps a variational Bayes implementation to further accelerate computation


• Consider use of regularized horseshoe or horseshoe + priors
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