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Motivation

* Desired end-product: a flexible curve-fitting approach of a (possibly non-
(Gaussian) outcome on a continuous predictor that allows for local changes in

variance
* Additional desirable features:
 Equipped to work with small and large numbers of observations
 Both equally and unequally spaced grids of the predictor

* Possibly multiple measurements at the same value of the predictor

* Provides uncertainty quantification
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The Horseshoe Prior

 The horseshoe prior was developed as a Bayesian approach for variable
shrinkage.

* Suppose we are considering the model for subjects i =1, ..., n and predictors
=1, ..., p:

Vi = Pixy+ Ppxyi+ ..o+ ﬁpxpi T €
e; ~ N(0,6%)

e |f pislarge, we might expect that most of our coefficients are zero, and just a
couple effects are very large.
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The Horseshoe Prior

* |In 2010, Carvalho et al. proposed a continuous mixture prior, which they called the
horseshoe:

p; ~ NO,7°w?)
w; ~ C*(0,1), 7 ~ C*(0,c)
. 72is the global shrinkage parameter, and controls the overall level of shrinkage for

all the effects.

5 a)j2 IS the local shrinkage parameter, and allows for a mixture of very large signals

and zero signals.
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A Horseshoe Process

* We can extend the horseshoe distribution to the stochastic process setting,
following Polson & Scott (2012).

» We define a horseshoe process H(x) observed at discrete locations
Xs X15 + + + s X,,, S

H(x) — H(x;_;) ~ N(0,7°w7(x; — x;_))
a)] ~ C+(O,1),] — 1,...,m
r ~ C*0, ¢), H(xy) =0
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A Horseshoe Process

009 4

UJ.U0 M

Path

UJUsSH

0.00 -

1
I_:l 2 l_l '.':’ { )

Elizabeth Chase, University of Michigan Biostatistics

ecchase@umich.edu
12



Second Derivative Shrinkage

L et Vi, indicate some outcome (i.e. biomarker reading, disease incidence, etc.) at time

[

gE(Y)) = a+ J H(u)du
0

. a ~ N(a,b?)

. H(u) — H(u — s) ~ NO,c**w(u)*s), H(ty) =0
e wu) ~CHO,1), u=t,...,t, o) =0

. 7~ C*0,1)
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Computation

 The model is currently implemented using Hamiltonian Monte Carlo in Stan
(via cmdstanr in R) using decentered parameterizations.

* This yields faster computational performance than other Bayesian methods
that seek to address this problem.

 However, computation time is still a constraint, and issues with divergences
still appear occasionally for select datasets.
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Simulation Study
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Simulation Study

 Considered 3 data-generating scenarios, 2 sample sizes (n = 50, n = 100),
and 3 types of outcome data (Gaussian, Binomial, Poisson)

 Ran 100 replicates of each scenario

 Comparison methods: Gaussian process regression, trend filtering model
(Tibshirani 2014), shrinkage process Markov random fields (Faulkner & Minin

2018)
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Simulation Study

Sample Model Fits, Mixed Linear Scenario
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Simulation Study

Sample Model Fits, Step Scenario
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Simulation Study

Sample Model Fits, Sombrero Scenario
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Future Work

* Continue workshopping method —how to set initial values, recommendations
for setting hyperpriors

 Perhaps a variational Bayes implementation to further accelerate computation

* Consider use of regularized horseshoe or horseshoe + priors
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